We are given \( \vec{a} = \hat{i} + 4\hat{j} + 3\hat{k} \) and \( \vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k} \), and need to find \( \vec{c} \), which is perpendicular to \( \vec{a} \) and lies in the plane of \( \vec{a} \), \( \vec{b} \).
Step 1: Perpendicular Condition
Since \( \vec{c} \) is perpendicular to \( \vec{a} \), we have:
\[
\vec{a} \cdot \vec{c} = 0
\]
Step 2: Plane Condition
Since \( \vec{c} \) lies in the plane of \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{c} \) as:
\[
\vec{c} = \lambda \vec{a} + \mu \vec{b}
\]
where \( \lambda \) and \( \mu \) are constants.
Step 3: Dot Product
For \( \vec{c} \) to be perpendicular to \( \vec{a} \), we set:
\[
\vec{a} \cdot \vec{c} = \vec{a} \cdot (\lambda \vec{a} + \mu \vec{b}) = 0
\]
Expanding:
\[
\lambda (\vec{a} \cdot \vec{a}) + \mu (\vec{a} \cdot \vec{b}) = 0
\]
Using the values for the dot products:
\[
\vec{a} \cdot \vec{a} = 26, \quad \vec{a} \cdot \vec{b} = 26
\]
This gives the equation:
\[
\lambda \times 26 + \mu \times 26 = 0 \quad \Rightarrow \quad \lambda + \mu = 0
\]
Step 4: Final Vector
Thus, \( \mu = -\lambda \), and we have:
\[
\vec{c} = \lambda (\vec{a} - \vec{b})
\]
Simplifying \( \vec{a} - \vec{b} \):
\[
\vec{a} - \vec{b} = -\hat{i} + \hat{j} - \hat{k}
\]
Thus, \( \vec{c} = -\hat{i} + \hat{j} - \hat{k} \).
Therefore, the correct answer is \( \vec{c} = -\hat{i} + \hat{j} - \hat{k} \).