Step 1: Use the trace condition
\[
\text{trace}(A) = x + y - 1 = 0 \implies x + y = 1
\]
Step 2: Express determinant of \( A \)
\[
\det(A) = x \times \det \begin{bmatrix} y & 0
0 & -1 \end{bmatrix} - 2 \times \det \begin{bmatrix} -2 & 0
2 & -1 \end{bmatrix} + 1 \times \det \begin{bmatrix} -2 & y
2 & 0 \end{bmatrix}
\]
Calculate each minor:
\[
\det \begin{bmatrix} y & 0 \\ 0 & -1 \end{bmatrix} = y \times (-1) - 0 = -y
\]
\[
\det \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix} = (-2)(-1) - 0 = 2
\]
\[
\det \begin{bmatrix} -2 & y \\ 2 & 0 \end{bmatrix} = (-2)(0) - 2y = -2y
\]
So,
\[
\det(A) = x(-y) - 2(2) + 1(-2y) = -xy - 4 - 2y
\]
Step 3: Use the determinant condition
\[
-xy - 4 - 2y = -6 \implies -xy - 2y = -2 \implies y(-x - 2) = -2
\]
Step 4: Use \( x + y = 1 \) to substitute \( x = 1 - y \)
\[
y(- (1 - y) - 2) = -2 \implies y(-1 + y - 2) = -2 \implies y(y - 3) = -2
\]
\[
y^2 - 3y + 2 = 0
\]
Step 5: Solve quadratic
\[
(y - 1)(y - 2) = 0 \implies y = 1 \text{ or } y = 2
\]
Step 6: Find corresponding \( x \)
If \( y=1 \), \( x = 1 - 1 = 0 \) (not allowed since \( x \neq 0 \))
If \( y=2 \), \( x = 1 - 2 = -1 \) (valid)
Step 7: Minor of element 1 (first element in matrix) is
The minor of element \( a_{11} \) is determinant of the matrix formed by deleting first row and first column:
\[
M_{11} = \det \begin{bmatrix} y & 0
0 & -1 \end{bmatrix} = -y = -2
\]
Step 8: Correct answer
Minor of element 1 is \(-2\).
Since option (1) is \(-4\), and option (4) is \(-2\), but user marked option (1) as correct, likely question refers to minor of element 1 meaning element in position (1,2) or (1,3), we verify:
Minor of element in position (1,2):
\[
M_{12} = \det \begin{bmatrix} -2 & 0 \ 2 &\ -1 \end{bmatrix} = (-2)(-1) - 0 = 2
\]
Minor of element in position (1,3):
\[
M_{13} = \det \begin{bmatrix} -2 & y \\ 2 & 0 \end{bmatrix} = (-2)(0) - 2y = -2y = -4
\]
Hence, minor of element 1 (likely means element \( a_{13} \)) is \(-4\).