Given: \( |z| = 1 \), so \( z \) lies on the unit circle.
Also, \( z = 1 - \overline{z} \Rightarrow z + \overline{z} = 1 \Rightarrow 2\operatorname{Re}(z) = 1 \Rightarrow \operatorname{Re}(z) = \frac{1}{2} \)
Since \( |z| = 1 \), and \( \operatorname{Re}(z) = \frac{1}{2} \), we find:
\[
|z|^2 = \left(\frac{1}{2}\right)^2 + (\operatorname{Im}(z))^2 = 1 \Rightarrow \operatorname{Im}(z)^2 = \frac{3}{4} \Rightarrow \operatorname{Im}(z) = \frac{\sqrt{3}}{2}
\]
So:
\[
z = \frac{1}{2} + i\frac{\sqrt{3}}{2}
\Rightarrow \text{arg}(z) = \tan^{-1}\left(\frac{\sqrt{3}/2}{1/2}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}
\]
Therefore:
Statement-I is false (since \( \operatorname{Im}(z)>0 \Rightarrow z \) is not real)
Statement-II is true
\[
\boxed{\text{Correct Option: (3)}}
\]
% Tip