Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Show Hint
For complex number problems, always use the identities: \( z + \overline{z} = 2\operatorname{Re}(z) \) and \( z\overline{z} = |z|^2 \). These simplify many expressions.