We want to find \(\mathcal{L}\{t \sin t\}\).
We use the Laplace transform property for multiplication by t:
$$ \mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s) $$
where \(F(s) = \mathcal{L}\{f(t)\}\).
In this case, \(n=1\) and \(f(t) = \sin t\).
First, find \(F(s)\):
$$ F(s) = \mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1^2} = \frac{1}{s^2 + 1} $$
Now apply the property with \(n=1\):
$$ \mathcal{L}\{t \sin t\} = (-1)^1 \frac{d}{ds} F(s) = -\frac{d}{ds} \left( \frac{1}{s^2 + 1} \right) $$
Use the quotient rule or chain rule for differentiation.
Let \(u = s^2+1\), \(\frac{d}{ds}(u^{-1}) = -u^{-2}\frac{du}{ds}\).
Here \(du/ds = 2s\).
$$ = - \left[ -(s^2+1)^{-2} (2s) \right] = - \left[ -\frac{2s}{(s^2+1)^2} \right] $$
$$ = \frac{2s}{(s^2+1)^2} $$
This matches option (1).