The given vector field is:
\[
\vec{F} = f(x,y)\hat{i} + g(x,y)\hat{j}
= e^{-x} \sin(-y) \hat{i} + e^{-x} \cos(-y) \hat{j}
= -e^{-x} \sin y \hat{i} + e^{-x} \cos y \hat{j}
\]
Compute the line integral over closed path \( C \). Since \( \vec{F} \) is continuously differentiable, we apply Green's Theorem:
\[
\oint_C f\,dx + g\,dy = \iint_R \left( \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx\,dy
\]
\[
\frac{\partial g}{\partial x} = -e^{-x} \cos y,\quad \frac{\partial f}{\partial y} = -e^{-x} \cos y
\Rightarrow \text{integrand} = -e^{-x} \cos y + e^{-x} \cos y = 0
\]
Thus, by Green's Theorem, the line integral is 0.
However, evaluating directly over the specific path \( C \), we obtain:
\[
\oint_C f\,dx + g\,dy = \int_0^{\pi/2} e^{-x}\,dx = \left[ -e^{-x} \right]_0^{\pi/2} = 1 - e^{-\pi/2}
\]
Since the path is a rectangle traversed counterclockwise, the total value is:
\[
2(1 - e^{-\pi/2})
\]
Final Answer: (2) \( 2(1 - e^{-\frac{\pi}{2}}) \)