Let \( f(z) = u(x, y) + i v(x, y) \)
Given:
\[
u = -x^2 + xy + y^2,\quad v = ax^2 + bxy + cy^2
\]
For \(f(z)\) to be analytic, the Cauchy-Riemann (CR) equations must hold:
\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\]
Compute partial derivatives:
\[
\frac{\partial u}{\partial x} = -2x + y,\quad \frac{\partial u}{\partial y} = x + 2y
\]
\[
\frac{\partial v}{\partial y} = bx + 2cy,\quad \frac{\partial v}{\partial x} = 2ax + by
\]
Now apply CR equations:
\[
-2x + y = bx + 2cy \quad \text{(i)}
\]
\[
x + 2y = - (2a x + b y) \quad \text{(ii)}
\]
Equating coefficients:
From (i):
\[
-2 = b,\quad 1 = 2c \Rightarrow b = -2,\quad c = \frac{1}{2}
\]
From (ii):
\[
1 = -2a \Rightarrow a = -\frac{1}{2},\quad 2 = -b \Rightarrow b = -2
\]
There seems to be a contradiction in value of \(a\). Rechecking:
\[
x + 2y = - (2a x + b y) \Rightarrow x + 2y = -2a x - b y
\Rightarrow x + 2y + 2a x + b y = 0
\Rightarrow x(1 + 2a) + y(2 + b) = 0
\]
Equating coefficients to zero:
\[
1 + 2a = 0 \Rightarrow a = -\frac{1}{2},\quad 2 + b = 0 \Rightarrow b = -2
\]
Substitute \(b = -2\) into equation (i):
\[
-2x + y = -2x + 2cy \Rightarrow y = 2cy \Rightarrow 1 = 2c \Rightarrow c = \frac{1}{2}
\]
Final Answer: (3) \(a = -\frac{1}{2},\ b = -2,\ c = \frac{1}{2}\)