Given:
\[
\lambda_1 = 1,\quad \lambda_2 = -1,\quad \lambda_3 = 2
\]
Eigenvalues of \( A^2 \) are \( \lambda_1^2, \lambda_2^2, \lambda_3^2 = 1, 1, 4 \)
Eigenvalues of \( A^{-1} \) are \( \frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3} = 1, -1, \frac{1}{2} \)
Eigenvalues of \( B = 2A^2 + A^{-1} - I \) will be:
\[
\begin{aligned}
\text{For } \lambda_1: &\quad 2(1) + 1 - 1 = 2 \\
\text{For } \lambda_2: &\quad 2(1) - 1 - 1 = 0 \\
\text{For } \lambda_3: &\quad 2(4) + \frac{1}{2} - 1 = 8 + 0.5 - 1 = 7.5
\end{aligned}
\]
Sum of eigenvalues (Trace of \( B \)) = \( 2 + 0 + 7.5 = \frac{19}{2} \)
Final Answer: (4) \(\frac{19}{2}\)