Given: Cauchy-Euler form differential equation
\[
x^2 y'' - x y' + 5y = 0
\]
Assume solution of form \( y = x^m \), then:
\[
y' = m x^{m-1}, y'' = m(m-1)x^{m-2}
\Rightarrow x^2 y'' - x y' + 5y = x^m[m(m-1) - m + 5] = 0
\Rightarrow m^2 + 5 = 0 \Rightarrow m = \pm \sqrt{5}i
\]
General solution for complex roots:
\[
y = x^{\text{Re}(m)}[A cos(\text{Im}(m)\log x) + B \sin(\text{Im}(m)\log x)]
\Rightarrow y = x^0[A cos(\sqrt{5}\log x) + B \sin(\sqrt{5} \log x)]
\]
But since roots are \( \pm 2i \), solution is:
\[
y = x^0[A cos(2 \log x) + B \sin(2 \log x)]
= A cos(2 \log x) + B \sin(2 \log x)
\Rightarrow \text{With } x \text{ as factor: } y = x[A cos(2 \log x) + B \sin(2 \log x)]
\]
Final Answer: (1) \(Ax cos 2(\log x) + Bx \sin 2(\log x)\)