This is a second-order linear homogeneous differential equation.
The characteristic equation is:
\[ r^2 - 4 = 0 \]
\[ r = \pm 2 \]
Since the roots are real and distinct, the general solution is:
\[ y = C_1 e^{2x} + C_2 e^{-2x} \]
Verify: $y' = 2C_1 e^{2x} - 2C_2 e^{-2x}$, $y" = 4C_1 e^{2x} + 4C_2 e^{-2x}$.
\[ y" - 4y = (4C_1 e^{2x} + 4C_2 e^{-2x}) - 4(C_1 e^{2x} + C_2 e^{-2x}) = 0 \]
Option (1) is correct.