Given:
\[
n = 100, p = 0.01 \Rightarrow np = 1 \Rightarrow \lambda = 1
\]
This is a Poisson distribution problem with mean \(\lambda = 1\)
We need \( P(X \geq 2) = 1 - P(0) - P(1) \)
\[
P(0) = \frac{e^{-1} (1)^0}{0!} = e^{-1}, P(1) = \frac{e^{-1} (1)^1}{1!} = e^{-1}
\]
\[
P(X \geq 2) = 1 - e^{-1} - e^{-1} = 1 - 2e^{-1}
\]
Final Answer: (3) \(1 - 2e^{-1}\)