The width of the first secondary maxima for single-slit diffraction is given by:
Width of 1st secondary maxima = \( \frac{\lambda D}{a} \)
where \( \lambda = 400 \times 10^{-9} \, \text{m} \), \( a = 0.2 \times 10^{-3} \, \text{m} \), and \( D = 100 \, \text{cm} = 1 \, \text{m} \). Substitute the values:
Width of 1st secondary maxima = \[ \frac{400 \times 10^{-9} \times 1}{0.2 \times 10^{-3}} = 2 \, \text{mm} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: