We are asked to find the area between the line \( y = x - 1 \), \( y = 0 \), and the interval \( -2 \leq y \leq 2 \).
First, express \( y = x - 1 \) in terms of \( x \): \[ x = y + 1 \] Now, the limits of integration are \( y = -2 \) and \( y = 2 \).
The area is found by integrating the expression for \( x \): \[ \text{Area} = \int_{-2}^{2} (y + 1) \, dy \] Evaluating the integral: \[ \text{Area} = \left[ \frac{y^2}{2} + y \right]_{-2}^{2} \] Substitute the limits: \[ = \left( \frac{2^2}{2} + 2 \right) - \left( \frac{(-2)^2}{2} + (-2) \right) \] \[ = \left( \frac{4}{2} + 2 \right) - \left( \frac{4}{2} - 2 \right) \] \[ = (2 + 2) - (2 - 2) \] \[ = 4 \]
Thus, the area is \( 4 \).
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to: