Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
To determine the area \( A \) of the region defined by the inequalities \( 2y \leq x^2 + 3 \), \( y + |x| \leq 3 \), \( y \geq |x - 1| \), we solve step-by-step:
1. Inequality Analysis:
2. Intersection of curves:
3. Bounded region:
4. Area Calculation:
5. Completion:
By further finding two entire areas surrounded and symmetry, total area \( 6A = 12 \). Therefore, the answer is 12
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).