Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
To determine the area \( A \) of the region defined by the inequalities \( 2y \leq x^2 + 3 \), \( y + |x| \leq 3 \), \( y \geq |x - 1| \), we solve step-by-step:
1. Inequality Analysis:
2. Intersection of curves:
3. Bounded region:
4. Area Calculation:
5. Completion:
By further finding two entire areas surrounded and symmetry, total area \( 6A = 12 \). Therefore, the answer is 12
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:


The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?