Let \( x_1 = 0, x_2 = 1, x_3 = 2, x_4 = 3 \) and \( x_5 = 0 \) be the observed values of a random sample of size 5 from a discrete distribution with the probability mass function \[ f(x; \theta) = P(X = x) = \begin{cases} \frac{\theta}{3}, & x = 0, \\ \frac{2\theta}{3}, & x = 1, \\ \frac{1 - \theta}{2}, & x = 2, 3, \end{cases} \] where \( \theta \in [0,1] \) is the unknown parameter. Then the maximum likelihood estimate of \( \theta \) is