Step 1: Expand the expression.
$(AB)(\bar{A}+B)(A+\bar{B})$
First multiply $(AB)(\bar{A}+B)$:
$AB\bar{A} + AB\cdot B = 0 + AB = AB.$
Step 2: Multiply the remaining factor.
Now the expression becomes
$AB(A+\bar{B}) = ABA + AB\bar{B}.$
Step 3: Simplify.
$ABA = AB,$
$AB\bar{B}=0.$
Thus total expression = $AB.$
Step 4: Conclusion.
The simplified Boolean expression is $AB.$
Match the LIST-I with LIST-II
| LIST-I (Logic Gates) | LIST-II (Expressions) | ||
|---|---|---|---|
| A. | EX-OR | I. | \( A\bar{B} + \bar{A}B \) |
| B. | NAND | II. | \( A + B \) |
| C. | OR | III. | \( AB \) |
| D. | EX-NOR | IV. | \( \bar{A}\bar{B} + AB \) |
Choose the correct answer from the options given below:

