Step 1: Compute the Jacobian.
$\xi = 2x + 3y, \eta = 3x - 2y.$ Jacobian determinant:
$\displaystyle J = \begin{vmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = (2)(-2) - (3)(3) = -4 - 9 = -13.$ \\
Step 2: Area element relation.
$dx\,dy = \dfrac{1}{|J|}\, d\xi\, d\eta = \dfrac{1}{13} d\xi\, d\eta.$ \\
Step 3: Conclusion.
Thus $dx\,dy = \dfrac{1}{13} d\xi d\eta$.

