Step 1: Start from the definition of work.
For expansion from $V_1$ to $V_2$:
$W = \displaystyle \int_{V_1}^{V_2} P\, dV$.
Step 2: Substitute the equation of state.
$P = \dfrac{A}{V} + \dfrac{AB}{V^2}$.
Thus,
$W = \displaystyle \int_{V_1}^{V_2} \left( \dfrac{A}{V} + \dfrac{AB}{V^2} \right) dV$.
Step 3: Integrate term-by-term.
$\int \dfrac{A}{V}\, dV = A \ln\left(\dfrac{V_2}{V_1}\right)$,
$\int \dfrac{AB}{V^2}\, dV = AB\left(\dfrac{1}{V_1} - \dfrac{1}{V_2}\right)$.
Step 4: Final expression.
$W = A \ln\left(\dfrac{V_2}{V_1}\right) + AB\left(\dfrac{1}{V_1} - \dfrac{1}{V_2}\right)$.
Step 5: Conclusion.
This matches option (C).
