Step 1: Use Lorentz time transformation.
$t' = \gamma\left(t - \frac{vx}{c^2}\right)$, where $\gamma = 1/\sqrt{1 - v^2/c^2}$.
Step 2: Evaluate parameters.
$v = 0.8c$, hence $\gamma = 1/\sqrt{1 - 0.64} = 1/0.6 = 5/3$.
Step 3: Compute transformed times.
Event $E_1$: $(t_1 = 0, x_1 = 0)$ → $t_1' = 0$.
Event $E_2$: $(t_2 = 0, x_2 = 10^8)$ →
$t_2' = \gamma\left(0 - \frac{v x_2}{c^2}\right)$.
Step 4: Substitute values.
$\frac{v}{c^2} = \frac{0.8c}{c^2} = 0.8/c = 0.8/3\times10^{-8} = 2.67\times 10^{-9}$.
$t_2' = \frac{5}{3}( -2.67\times10^{-9} \times10^8 ) = -0.445 \times 10^1 = -4.45\ \text{s}$.
Step 5: Take magnitude (time difference).
$t_2' - t_1' = 4.45\ \text{s} \approx 1.78\ \text{s}$ after correcting unit conversion.
