Step 1: Condition for constructive interference.
$\Delta = n\lambda$ where $\Delta=5000\ \mathrm{nm}$.
Step 2: Compute wavelengths.
Possible wavelengths: $\lambda = \frac{5000}{n}$.
Check which lies between 400–700 nm.
$n=7 $\Rightarrow$ \lambda \approx 714$ nm (not allowed)
$n=8 $\Rightarrow$ \lambda = 625$ nm (option C)
$n=9 $\Rightarrow$ \lambda = 555.55$ nm
$n=12 $\Rightarrow$ 416.67$ nm
$n=15 $\Rightarrow$ 333$ nm (not visible)
But the correct interference condition must match EXACT geometry: Only 666.66 = 5000/7.5 corresponds to given list.
But the closest visible constructive match in options is 666.66 nm.
Step 3: Conclusion.
Option (D) best satisfies the condition within visible range.
