Step 1: Use momentum conservation for variable mass systems.
The equation of motion when mass increases by capturing matter at rest is
$\displaystyle m\frac{dv}{dt} = mg - v\frac{dm}{dt}.$
Given $\displaystyle \frac{dm}{dt} = \lambda m$, substitute to obtain
$m\frac{dv}{dt} = mg - \lambda m v.$
Step 2: Simplify the differential equation.
Cancelling $m$,
$\displaystyle \frac{dv}{dt} = g - \lambda v.$
Step 3: Solve the DE.
Solution of
$\displaystyle \frac{dv}{dt}+\lambda v=g$
is
$\displaystyle v(t)=\frac{g}{\lambda}\left(1-e^{-\lambda t}\right).$
Step 4: Analyze behaviour.
As $t\to\infty$ (i.e. $\lambda t \gg 1$),
$e^{-\lambda t}\to 0$ and
$v\to \dfrac{g}{\lambda}$ (a constant terminal speed).
Step 5: Conclusion.
The raindrop reaches a constant speed at large times $\lambda t\gg 1$, matching option (C).
