>
questions
List of practice Questions
There are
$10$
persons including
$3$
ladies. A committee of
$4$
persons including at least one lady is to be formed. The number of ways of forming such a committee is
KEAM
Mathematics
permutations and combinations
For an isolated system, ∆U=0, what will be ∆S ?
CBSE Class XI
Chemistry
Enthalpy change
Find the perimeter of each of the following shapes :
A triangle of sides 3 cm, 4 cm and 5 cm.
An equilateral triangle of side 9 cm.
An isosceles triangle with equal sides 8 cm each and third side 6 cm.
CBSE Class VI
Mathematics
Perimeter
Find the mean deviation about the median for the data.
\(x_i\)
5
7
9
10
12
15
\(f_i\)
8
6
2
2
2
6
CBSE Class XI
Mathematics
Mean Deviation
A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m.
CBSE Class VIII
Mathematics
Surface Area of Cube, Cuboid and Cylinder
If
$ \overrightarrow{a},\text{ }\overrightarrow{b},\text{ }\overrightarrow{c} $
are non-coplanar and
$ (\overrightarrow{a}+\lambda \overrightarrow{b}).[(\overrightarrow{b}+3\overrightarrow{c})\times (\overrightarrow{c}\times 4\overrightarrow{a})]=0, $
then the value of
$ \lambda $
is equal to
KEAM
Mathematics
Vector Algebra
The image of the interval [-1, 3] under the mapping
$f : R\rightarrow R$
given by
$f \left(x\right)=4x^{3}-12x$
is
KEAM
Mathematics
Binary operations
If
$A$
and
$B$
are square matrices of the same order and if
$A=A^{T},B=B^{T},$
then
$\left(ABA\right)^{T}=$
KEAM
Mathematics
Matrices
If
$ x={{\sin }^{-1}}(3t-4{{t}^{3}}) $
and
$ y={{\cos }^{-1}}(\sqrt{1-{{t}^{2}}}), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
How did Mandela’s ‘hunger for freedom’ change his life?
CBSE Class X
English
Nelson Mandela: Long Walk to Freedom
How did Douglas overcome his fear of water?
CBSE CLASS XII
English
Deep water
Classify the following reactions in one of the reaction type studied in this unit
a)
\(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HS}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{Br}^{-}\)
b)
\(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HCl} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{ClC}-\mathrm{CH}_{3}\)
c)
\(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HO}^{-} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-}\)
d)
\(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{HBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CBrCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}\)
CBSE Class XI
Chemistry
Organic Chemistry - Some Basic Principles and Techniques
If
$ l,m $
and
$ n $
are real numbers such that
$ {{l}^{2}}+{{m}^{2}} $
$ +{{n}^{2}}=0, $
then
$ \left| \begin{matrix} 1+{{l}^{2}} & lm & ln \\ lm & 1+{{m}^{2}} & mn \\ ln & mn & 1+{{n}^{2}} \\ \end{matrix} \right| $
is equal to
KEAM
Mathematics
Determinants
If
$p :$
It is snowing,
$q :$
I am cold, then the compound statement "It is snowing and it is not that I am cold" is given by
KEAM
Mathematics
mathematical reasoning
If sin
$\left(\theta-\phi\right) = n \, sin (\theta - \phi),n \ne1,$
then the value of
$\frac{\tan\theta}{\tan\phi}$
is equal to
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
If the projection of the vector
$\vec {a}$
on
$\vec{b}$
is
$ \overrightarrow{a} $
on
$ \overrightarrow{b} $
is
$ |\overrightarrow{a}\times \overrightarrow{b}| $
and if
$ 3\overrightarrow{b}=\vec{i}+\vec{j}+\vec{k}, $
then the angle between
$ \vec{a} $
and
$ \vec{b} $
is
KEAM
Mathematics
Vector Algebra
If
$\begin{vmatrix}3i&-9i&1\\ 2&9i&-1\\ 10&9&i\end{vmatrix} = x + iy $
, then
KEAM
Mathematics
Determinants
If
$xy\, = \,A \,sinx \,+ \,B \,cos \,x$
is the solution of the differential equation
$x\frac{d^{2}y}{dx^{2}}-5a\frac{dy}{dx}+xy=0$
then the value of
$a$
is equal to
KEAM
Mathematics
Differential equations
If
$ y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
In a certain town
$25\%$
families own a cell phone,
$15\%$
families own a scooter and
$65\%$
families own neither a cell phone nor a scooter. If
$1500$
families own both a cell phone and a scooter, then the total number of families in the town is
KEAM
Mathematics
Sets
In the expansion of
$ {{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}, $
the coefficient of
$ {{x}^{14}} $
is
KEAM
Mathematics
Binomial theorem
Let
$A (6, -1), B (1, 3)$
and
$C (x, 8)$
be three points such that
$AB = BC$
. The values of
$x$
are
KEAM
Mathematics
Straight lines
The domain of the function
$f\left(x\right) = sin^{-1}\left(\frac{x+5}{2}\right)$
is
KEAM
Mathematics
Functions
The general solution of the differential equation
$(x + y + 3) \,\frac{dy}{dx}\, =\,1$
is
KEAM
Mathematics
Differential equations
The principal argument of the complex numb
$Z=\frac{1+\sin \frac{\pi}{3}+i \cos\frac{\pi}{3} }{1+\sin \frac{\pi}{3} - i \cos\frac{\pi}{3} }$
is
KEAM
Mathematics
Complex numbers
Prev
1
...
5413
5414
5415
5416
5417
...
6022
Next