>
questions
List of practice Questions
If sin
$\left(\theta-\phi\right) = n \, sin (\theta - \phi),n \ne1,$
then the value of
$\frac{\tan\theta}{\tan\phi}$
is equal to
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
If the projection of the vector
$\vec {a}$
on
$\vec{b}$
is
$ \overrightarrow{a} $
on
$ \overrightarrow{b} $
is
$ |\overrightarrow{a}\times \overrightarrow{b}| $
and if
$ 3\overrightarrow{b}=\vec{i}+\vec{j}+\vec{k}, $
then the angle between
$ \vec{a} $
and
$ \vec{b} $
is
KEAM
Mathematics
Vector Algebra
If
$\begin{vmatrix}3i&-9i&1\\ 2&9i&-1\\ 10&9&i\end{vmatrix} = x + iy $
, then
KEAM
Mathematics
Determinants
If
$xy\, = \,A \,sinx \,+ \,B \,cos \,x$
is the solution of the differential equation
$x\frac{d^{2}y}{dx^{2}}-5a\frac{dy}{dx}+xy=0$
then the value of
$a$
is equal to
KEAM
Mathematics
Differential equations
If
$ y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
In a certain town
$25\%$
families own a cell phone,
$15\%$
families own a scooter and
$65\%$
families own neither a cell phone nor a scooter. If
$1500$
families own both a cell phone and a scooter, then the total number of families in the town is
KEAM
Mathematics
Sets
In the expansion of
$ {{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}, $
the coefficient of
$ {{x}^{14}} $
is
KEAM
Mathematics
Binomial theorem
Let
$A (6, -1), B (1, 3)$
and
$C (x, 8)$
be three points such that
$AB = BC$
. The values of
$x$
are
KEAM
Mathematics
Straight lines
The domain of the function
$f\left(x\right) = sin^{-1}\left(\frac{x+5}{2}\right)$
is
KEAM
Mathematics
Functions
The general solution of the differential equation
$(x + y + 3) \,\frac{dy}{dx}\, =\,1$
is
KEAM
Mathematics
Differential equations
The principal argument of the complex numb
$Z=\frac{1+\sin \frac{\pi}{3}+i \cos\frac{\pi}{3} }{1+\sin \frac{\pi}{3} - i \cos\frac{\pi}{3} }$
is
KEAM
Mathematics
Complex numbers
The set
$\{(x, y) : x + y =1\}$
in the
$xy$
plane represents
KEAM
Mathematics
applications of integrals
The value of
$\frac{\sqrt{3}}{\sin15^{\circ}} - \frac{\sqrt{1}}{\cos15^{\circ}}$
is equal to
KEAM
Mathematics
Trigonometric Functions
If the mean of the numbers
$a, b, 8,5,10$
is
$6$
and their variance is
$6.8$
, then
$ab$
is equal to
KEAM
Mathematics
Statistics
If the position vectors of three consecutive vertices, of a parallelogram are
$ \vec{i}+\vec{j}+\vec{k}, $
$ \vec{i}+3\vec{j}+5\vec{k} $
and
$ 7\vec{i}+9\vec{j}+11\vec{k}, $
then the coordinates of the fourth vertex are
KEAM
Mathematics
Vector Algebra
If the standard deviation of
$3$
,
$8$
,
$6$
,
$10$
,
$12$
,
$9$
,
$11$
,
$10$
,
$12$
,
$7$
is
$2.71$
, then the standard deviation of
$30$
,
$80$
,
$60$
,
$100$
,
$120$
,
$90$
,
$110$
,
$100$
,
$120$
,
$70$
is
KEAM
Mathematics
Statistics
If
$ \sqrt{x+iy}=\pm (a+ib), $
then
$ \sqrt{-x-iy} $
is equal to
KEAM
Mathematics
Complex numbers
If
$ x $
satisfies the in equations
$ 2x-7<11 $
, $ 3x+4
KEAM
Mathematics
linear inequalities
If
$ y={{\sin }^{-1}}(3x-4{{x}^{3}})+{{\cos }^{-1}}(4{{x}^{3}}-3x) $
$ +{{\tan }^{-1}}(e), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Differentiability
Let
$ \alpha $
and
$ \beta $
be the roots of
$ a{{x}^{2}}+bx+c=0 $
. Then,
$ \underset{x\to \alpha }{\mathop{\lim }}\,\frac{1-\cos (a{{x}^{2}}+bx+c)}{{{(x-\alpha )}^{2}}} $
is equal to
KEAM
Mathematics
Derivatives
Standard deviation of first
$n$
odd natural numbers is
KEAM
Mathematics
Variance and Standard Deviation
The
$A$
.
$M$
. of
$9$
terms is
$15$
. If one more term is added to this series, then the
$A$
.
$M$
. becomes
$16$
. The value of the added term is
KEAM
Mathematics
Statistics
The angle between the straight lines
$x-1=\frac{2y+3}{3}=\frac{z+5}{2}$
and
$x-3r+2; y=-2r-1; z=2,$
where
$r$
is a parameter, is
KEAM
Mathematics
Three Dimensional Geometry
The argument of the complex number
$ \left( \frac{i}{2}-\frac{2}{i} \right) $
is equal to
KEAM
Mathematics
Quadratic Equations
The locus of a point which is equidistant from the points
$(1,1)$
and
$(3, 3)$
is
KEAM
Mathematics
Straight lines
Prev
1
...
5411
5412
5413
5414
5415
...
6019
Next