Let continuous-time signals \( x_1(t) \) and \( x_2(t) \) be defined as:
\[
x_1(t) =
\begin{cases}
1, & t \in [0, 1] \\
2 - t, & t \in [1, 2] \\
0, & \text{otherwise}
\end{cases}
\quad \text{and} \quad
x_2(t) =
\begin{cases}
t, & t \in [0, 1] \\
2 - t, & t \in [1, 2] \\
0, & \text{otherwise}
\end{cases}
\]
Consider the convolution \( y(t) = x_1(t) * x_2(t) \). Then
\[
\int_{-\infty}^{\infty} y(t)\,dt =\ ?
\]