Given:
- Slit width \( a = 3\,\text{mm} = 3 \times 10^{-3}\,\text{m} \)
- Distance to screen \( D = 1.5\,\text{m} \)
- Wavelength \( \lambda = 600\,\text{nm} = 600 \times 10^{-9}\,\text{m} \)
\underline{(I) First Order Minimum:}
For single slit diffraction, the minima occur at:
\[
a \sin \theta = m\lambda \quad \text{for } m = \pm 1, \pm 2, \ldots
\]
For small angles, \( \sin \theta \approx \tan \theta = \frac{y}{D} \),
\[
a \cdot \frac{y_1}{D} = \lambda \Rightarrow y_1 = \frac{\lambda D}{a}
= \frac{600 \times 10^{-9} \times 1.5}{3 \times 10^{-3}} = 3 \times 10^{-4}\,\text{m} = 0.3\,\text{mm}
\]
Distance of first order minimum = \( \boxed{0.3\,\text{mm}} \)
\underline{(II) Second Order Maximum (Approximate):}
Secondary maxima in single slit are not sharp and lie approximately midway between two minima.
So, second order maximum lies roughly between 1st and 2nd minima:
\[
\text{Position of 2nd minimum: } y_2 = \frac{2\lambda D}{a}
= \frac{2 \times 600 \times 10^{-9} \times 1.5}{3 \times 10^{-3}} = 0.6\,\text{mm}
\]
\[
\text{Approximate position of 2nd maximum: } y \approx \frac{y_1 + y_2}{2} = \frac{0.3 + 0.6}{2} = 0.45\,\text{mm}
\]
Distance of second order maximum \( \approx \boxed{0.45\,\text{mm}} \)