(a) Work Done to Separate Charges:
Given:
\[
q_1 = -5\,\mu C = -5 \times 10^{-6}\,\text{C}, \quad q_2 = 2\,\mu C = 2 \times 10^{-6}\,\text{C}
\]
\[
r = \text{distance between charges} = 6\,\text{cm} - (-4\,\text{cm}) = 10\,\text{cm} = 0.1\,\text{m}
\]
\[
W = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r}
\]
\[
= 9 \times 10^9 \cdot \frac{(-5 \times 10^{-6})(2 \times 10^{-6})}{0.1}
= -9 \times 10^9 \cdot \frac{10^{-11}}{0.1}
= -0.9\,\text{J}
\]
Answer:
\[
\boxed{W = -0.9\,\text{J}}
\]
(The work is negative because the charges attract, and external work is needed to separate them.)
(b) Electrostatic Potential Energy in Field:
Electric Field: \( \vec{E} = \frac{A}{r^2} \), with \( A = 8 \times 10^4 \,\text{N C}^{-1} \text{m}^2 \)
Electric Potential at distance \( r \):
\[
V = -\int \vec{E} \cdot dr = -\int \frac{A}{r^2} dr = \frac{A}{r}
\]
Calculate potential at positions of charges:
\[
r_1 = 4\,\text{cm} = 0.04\,\text{m}, \quad r_2 = 6\,\text{cm} = 0.06\,\text{m}
\]
\[
V_1 = \frac{8 \times 10^4}{0.04} = 2 \times 10^6\,\text{V}, \quad
V_2 = \frac{8 \times 10^4}{0.06} \approx 1.33 \times 10^6\,\text{V}
\]
Potential energy:
\[
U = q_1 V_1 + q_2 V_2
= (-5 \times 10^{-6})(2 \times 10^6) + (2 \times 10^{-6})(1.33 \times 10^6)
\]
\[
U = -10 + 2.66 = \boxed{-7.34\,\text{J}}
\]