Let the two interfering waves be of equal amplitude \( A \), and intensity \( I_0 \propto A^2 \).
The resultant amplitude at a point with phase difference \( \phi \) is:
\[
A_R = 2A \cos\left(\frac{\phi}{2}\right)
\Rightarrow I = A_R^2 = 4A^2 \cos^2\left(\frac{\phi}{2}\right)
\Rightarrow I = 4I_0 \cos^2\left(\frac{\phi}{2}\right)
\]
Resultant Intensity:
\[
\boxed{I = 4I_0 \cos^2\left(\frac{\phi}{2}\right)}
\]
Maximum Intensity:
When \( \phi = 0, 2\pi, 4\pi, \ldots \), \( \cos\left(\frac{\phi}{2}\right) = 1 \),
\[
I_{\max} = 4I_0
\]
Minimum Intensity:
When \( \phi = \pi, 3\pi, \ldots \), \( \cos\left(\frac{\phi}{2}\right) = 0 \),
\[
I_{\min} = 0
\]