Question:

The ratio of the intensities at maxima to minima in Young’s double-slit experiment is \( 25 : 9 \). Calculate the ratio of intensities of the interfering waves.

Show Hint

Use the identity: \[ \frac{I_{\text{max}}}{I_{\text{min}}} = \left( \frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}} \right)^2 \] Then apply componendo and dividendo to simplify the root ratio.
Updated On: Jun 17, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

In Young’s double-slit experiment, the resultant intensity at maxima and minima is given by: \[ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(\sqrt{I_1} + \sqrt{I_2})^2}{(\sqrt{I_1} - \sqrt{I_2})^2} \] Given: \[ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{25}{9} \] Taking square roots: \[ \frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}} = \frac{5}{3} \] Now apply componendo and dividendo: \[ \frac{\sqrt{I_1}}{\sqrt{I_2}} = \frac{5 + 3}{5 - 3} = \frac{8}{2} = 4 \Rightarrow \frac{I_1}{I_2} = 4^2 = \boxed{16:1} \]
Was this answer helpful?
0
0