Given:
\[
I_1 = 6\,\text{mA} = 6 \times 10^{-3}\,\text{A}, \quad
I_2 = 2\,\text{mA} = 2 \times 10^{-3}\,\text{A}
\]
\[
\Delta t = 50\,\text{ms} = 50 \times 10^{-3}\,\text{s}, \quad
\mathcal{E} = 0.4\,\text{V}
\]
Formula:
\[
\mathcal{E} = L \cdot \frac{|\Delta I|}{\Delta t}
\Rightarrow L = \frac{\mathcal{E} \cdot \Delta t}{|\Delta I|}
\]
\[
\Delta I = I_1 - I_2 = (6 - 2)\times 10^{-3} = 4 \times 10^{-3}\,\text{A}
\]
\[
L = \frac{0.4 \times 50 \times 10^{-3}}{4 \times 10^{-3}} = \frac{20 \times 10^{-3}}{4 \times 10^{-3}} = 5\,\text{H}
\]
\[
\boxed{L = 5\,\text{henry}}
\]