One mole of an ideal gas expands isothermally and reversibly from $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at $300 \mathrm{~K} . \Delta \mathrm{U}$, q and work done in the process respectively are : Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1}$ and $\mathrm{mol}^{-1}$ In $10=2.3$ $\log 2=0.30$ $\log 3=0.48$
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: