One mole of an ideal gas expands isothermally and reversibly from $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at $300 \mathrm{~K} . \Delta \mathrm{U}$, q and work done in the process respectively are : Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1}$ and $\mathrm{mol}^{-1}$ In $10=2.3$ $\log 2=0.30$ $\log 3=0.48$
To solve this problem, we need to find the change in internal energy (\(\Delta U\)), the heat exchanged (q), and the work done by the gas during the isothermal and reversible expansion from 10 dm3 to 20 dm3. The gas undergoes this process at a constant temperature of 300 K. Given that the gas is ideal, the key formulas involve the ideal gas laws and properties of isothermal processes.
The given options show the numerical values alongside their nearest approximations as per significant figures. Therefore, the correct answer is:
$0,178 \mathrm{~kJ},-1.718 \mathrm{~kJ}$
A piston of mass M is hung from a massless spring whose restoring force law goes as F = -kx, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height $ L_0 $ to $ L_1 $, the total energy delivered by the filament is (Assume spring to be in its natural length before heating) 
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]