Using the ideal gas law: \[ P V = n R T \] where \( P \) is pressure, \( V \) is volume, \( n \) is the number of moles, \( R \) is the gas constant, and \( T \) is the temperature.
Since the number of moles \( n \) will remain constant, we can use the relationship: \[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]
From the given, we know: - \( P_1 = 8 \, \text{kPa} \), \( T_1 = 1000 \, \text{K} \), and \( V_1 = V \), - \( P_2 = 7 \, \text{kPa} \), \( T_2 = 500 \, \text{K} \), and \( V_2 = 2V \).
At steady state, both vessels will reach a common pressure \( P_f \), and the volume of the combined system will be \( V + 2V = 3V \), with a common temperature of 600 K.
Using the ideal gas law to find the final pressure: \[ P_f = \frac{P_1 V_1 T_2 + P_2 V_2 T_1}{(V_1 + V_2) T_f} \]
Substituting the values: \[ P_f = \frac{8 \times 1 \times 500 + 7 \times 2 \times 1000}{(1 + 2) \times 600} = 6 \, \text{kPa} \]
Thus, the pressure in both vessels will be 6 kPa, and the correct answer is (2).
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: