Using the ideal gas law: \[ P V = n R T \] where \( P \) is pressure, \( V \) is volume, \( n \) is the number of moles, \( R \) is the gas constant, and \( T \) is the temperature.
Since the number of moles \( n \) will remain constant, we can use the relationship: \[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]
From the given, we know: - \( P_1 = 8 \, \text{kPa} \), \( T_1 = 1000 \, \text{K} \), and \( V_1 = V \), - \( P_2 = 7 \, \text{kPa} \), \( T_2 = 500 \, \text{K} \), and \( V_2 = 2V \).
At steady state, both vessels will reach a common pressure \( P_f \), and the volume of the combined system will be \( V + 2V = 3V \), with a common temperature of 600 K.
Using the ideal gas law to find the final pressure: \[ P_f = \frac{P_1 V_1 T_2 + P_2 V_2 T_1}{(V_1 + V_2) T_f} \]
Substituting the values: \[ P_f = \frac{8 \times 1 \times 500 + 7 \times 2 \times 1000}{(1 + 2) \times 600} = 6 \, \text{kPa} \]
Thus, the pressure in both vessels will be 6 kPa, and the correct answer is (2).
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: