Question:

There are two vessels filled with an ideal gas where volume of one is double the volume of the other. The large vessel contains the gas at 8 kPa at 1000 K while the smaller vessel contains the gas at 7 kPa at 500 K. If the vessels are connected to each other by a thin tube allowing the gas to flow and the temperature of both vessels is maintained at 600 K, at steady state the pressure in the vessels will be (in kPa).

Show Hint

For connected vessels containing an ideal gas, the pressure is determined by balancing the total mass of gas and its temperature across the vessels.
Updated On: Apr 23, 2025
  • 4.4
  • 6
  • 24
  • 18
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using the ideal gas law: \[ P V = n R T \] where \( P \) is pressure, \( V \) is volume, \( n \) is the number of moles, \( R \) is the gas constant, and \( T \) is the temperature. 
Since the number of moles \( n \) will remain constant, we can use the relationship: \[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \] 
From the given, we know: - \( P_1 = 8 \, \text{kPa} \), \( T_1 = 1000 \, \text{K} \), and \( V_1 = V \), - \( P_2 = 7 \, \text{kPa} \), \( T_2 = 500 \, \text{K} \), and \( V_2 = 2V \). 
At steady state, both vessels will reach a common pressure \( P_f \), and the volume of the combined system will be \( V + 2V = 3V \), with a common temperature of 600 K. 
Using the ideal gas law to find the final pressure: \[ P_f = \frac{P_1 V_1 T_2 + P_2 V_2 T_1}{(V_1 + V_2) T_f} \] 
Substituting the values: \[ P_f = \frac{8 \times 1 \times 500 + 7 \times 2 \times 1000}{(1 + 2) \times 600} = 6 \, \text{kPa} \] 
Thus, the pressure in both vessels will be 6 kPa, and the correct answer is (2).

Was this answer helpful?
0
0