Using the ideal gas law: \[ P V = n R T \] where \( P \) is pressure, \( V \) is volume, \( n \) is the number of moles, \( R \) is the gas constant, and \( T \) is the temperature.
Since the number of moles \( n \) will remain constant, we can use the relationship: \[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]
From the given, we know: - \( P_1 = 8 \, \text{kPa} \), \( T_1 = 1000 \, \text{K} \), and \( V_1 = V \), - \( P_2 = 7 \, \text{kPa} \), \( T_2 = 500 \, \text{K} \), and \( V_2 = 2V \).
At steady state, both vessels will reach a common pressure \( P_f \), and the volume of the combined system will be \( V + 2V = 3V \), with a common temperature of 600 K.
Using the ideal gas law to find the final pressure: \[ P_f = \frac{P_1 V_1 T_2 + P_2 V_2 T_1}{(V_1 + V_2) T_f} \]
Substituting the values: \[ P_f = \frac{8 \times 1 \times 500 + 7 \times 2 \times 1000}{(1 + 2) \times 600} = 6 \, \text{kPa} \]
Thus, the pressure in both vessels will be 6 kPa, and the correct answer is (2).
Match List-I with List-II.
The remainder when \( 64^{64} \) is divided by 7 is equal to:
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)