\( V_1 = 800 cm^3 \) \( V_2 = 200 cm^3 \) \( T_1 = 300 \)
K For adiabatic: \( TV^{\gamma - 1} = \) constant.
\( T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \) \( (300) (800)^{1.5 - 1} = T_2 (200)^{1.5 - 1} \) \( T_2 = 300 \left( \frac{800}{200} \right)^{0.5} \) \( T_2 = 300 (4)^{1/2} \)
\( T_2 = 600 \) K \( \Delta T = 600 - 300 = 300 \) K
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: