The process consists of three steps forming a cycle. The total heat exchanged in a cyclic process is equal to the total work done by the system, since the change in internal energy for a cyclic process is zero (\( \Delta U_{cyclic} = 0 \)).
The total heat \( Q_T = \omega_1 + \omega_2 + \omega_3 \), where \( \omega_1, \omega_2, \omega_3 \) are the work done in the isothermal expansion, isobaric compression, and isochoric heating, respectively.
Step 1: Isothermal expansion from \( (P_0, V_0) \) to \( (P_1, 4V_0) \).
For an isothermal process, \( PV = constant \),
so \( P_0 V_0 = P_1 (4V_0) \Rightarrow P_1 = \frac{P_0}{4} \).
Work done \( \omega_1 = \int_{V_0}^{4V_0} P dV = \int_{V_0}^{4V_0} \frac{P_0 V_0}{V} dV = P_0 V_0 [\ln V]_{V_0}^{4V_0} = P_0 V_0 (\ln(4V_0) - \ln V_0) = P_0 V_0 \ln \frac{4V_0}{V_0} = P_0 V_0 \ln 4 = P_0 V_0 (2 \ln 2) \).
Step 2: Isobaric compression from \( (\frac{P_0}{4}, 4V_0) \) to \( (\frac{P_0}{4}, V_0) \).
Work done \( \omega_2 = \int_{4V_0}^{V_0} P dV = P_1 (V_0 - 4V_0) = \frac{P_0}{4} (-3V_0) = -\frac{3}{4} P_0 V_0 = -0.75 P_0 V_0 \).
Step 3: Isochoric heating from \( (\frac{P_0}{4}, V_0) \) to \( (P_0, V_0) \).
For an isochoric process, the volume is constant (\( dV = 0 \)). Work done \( \omega_3 = \int_{V_0}^{V_0} P dV = 0 \).
The total heat exchanged in the process is the sum of the work done in each step: \[ Q_T = \omega_1 + \omega_2 + \omega_3 = 2 P_0 V_0 \ln 2 - 0.75 P_0 V_0 + 0 = P_0 V_0 (2 \ln 2 - 0.75) \]
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: