A piston of mass M is hung from a massless spring whose restoring force law goes as F = -kx, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height $ L_0 $ to $ L_1 $, the total energy delivered by the filament is (Assume spring to be in its natural length before heating)
Using WET: Total energy supplied = gravitational potential energy + spring potential energy + work done by gas
\( Mg(L_1 - L_0) + \int_{0}^{L_1-L_0} kx dx + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \) \( \frac{k}{4} [x^4]_{0}^{L_1 - L_0} + Mg(L_1 - L_0) + \int_{0}^{L_1-L_0} kx dx + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \)
\( \frac{k}{4} (L_1^4 - L_0^4) + Mg(L_1 - L_0) + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \) \( W_{ext} = \frac{k}{4} (L_1^4 - L_0^4) + Mg(L_1 - L_0) + nRT \ln \left( \frac{L_1}{L_0} \right) \)
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: