A piston of mass M is hung from a massless spring whose restoring force law goes as F = -kx, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height $ L_0 $ to $ L_1 $, the total energy delivered by the filament is (Assume spring to be in its natural length before heating)
Using WET: Total energy supplied = gravitational potential energy + spring potential energy + work done by gas
\( Mg(L_1 - L_0) + \int_{0}^{L_1-L_0} kx dx + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \) \( \frac{k}{4} [x^4]_{0}^{L_1 - L_0} + Mg(L_1 - L_0) + \int_{0}^{L_1-L_0} kx dx + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \)
\( \frac{k}{4} (L_1^4 - L_0^4) + Mg(L_1 - L_0) + nRT \ln \left( \frac{L_1}{L_0} \right) + W_{ext} = 0 \) \( W_{ext} = \frac{k}{4} (L_1^4 - L_0^4) + Mg(L_1 - L_0) + nRT \ln \left( \frac{L_1}{L_0} \right) \)
Given: $ \Delta H_f^0 [C(graphite)] = 710 $ kJ mol⁻¹ $ \Delta_c H^0 = 414 $ kJ mol⁻¹ $ \Delta_{H-H}^0 = 436 $ kJ mol⁻¹ $ \Delta_{C-H}^0 = 611 $ kJ mol⁻¹
The \(\Delta H_{C=C}^0 \text{ for }CH_2=CH_2 \text{ is }\) _____\(\text{ kJ mol}^{-1} \text{ (nearest integer value)}\)
Match List-I with List-II.
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is:
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to