Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |
(A)-(II), (B)-(III), (C)-(I), (D)-(IV)
We are asked to match physical quantities with their SI units.
(A) Heat capacity of a body:
\[ \text{Unit: } \frac{\text{Joule}}{\text{Kelvin}} = \text{J K}^{-1} \] Hence, (A) → (II)
(B) Specific heat capacity of a body:
\[ \text{Unit: } \frac{\text{Joule}}{\text{kilogram} \cdot \text{Kelvin}} = \text{J kg}^{-1} \text{K}^{-1} \] Hence, (B) → (III)
(C) Latent heat:
\[ \text{Unit: } \frac{\text{Joule}}{\text{kilogram}} = \text{J kg}^{-1} \] Hence, (C) → (I)
(D) Thermal conductivity:
\[ \text{Unit: } \frac{\text{Joule}}{\text{metre} \cdot \text{second} \cdot \text{Kelvin}} = \text{J m}^{-1} \text{K}^{-1} \text{s}^{-1} \] Hence, (D) → (IV)
| List-I | List-II |
|---|---|
| (A) Heat capacity of body | (II) J K-1 |
| (B) Specific heat capacity of body | (III) J kg-1 K-1 |
| (C) Latent heat | (I) J kg-1 |
| (D) Thermal conductivity | (IV) J m-1 K-1 s-1 |
\[ \boxed{(A) \to (II), \quad (B) \to (III), \quad (C) \to (I), \quad (D) \to (IV)} \]
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:



In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: