For a monatomic gas, the molar specific heat at constant volume is \(C_V = \frac{3}{2}R\), and for a diatomic gas, \(C_V = \frac{5}{2}R\). The total heat capacity \(C_V\) of the mixture is given by the weighted average formula:
\[ C_V = \frac{n_1C_{V1} + n_2C_{V2}}{n_1 + n_2} \]
Where:
Substituting the values into the equation:
\[ C_V = \frac{2 \times \frac{3}{2}R + 6 \times \frac{5}{2}R}{2 + 6} = \frac{3R + 15R}{8} = \frac{18R}{8} = \frac{9}{4}R \]
Thus, the molar specific heat of the mixture at constant volume is \(\frac{9}{4}R\).
Match List-I with List-II: List-I List-II
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: