We are given the following steps in the process:
\[
\text{Ice} \to \text{Ice} \xleftrightarrow{\text{Water}} \to \text{Water} \xrightarrow{\text{Water vapor}} \text{Water vapor}
\]
We need to calculate the total entropy change \( \Delta S_{\text{overall}} \) for this process:
\[
\Delta S_{\text{overall}} = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4 + \Delta S_5
\]
Where:
\( \Delta S_1 \) corresponds to the ice being heated from \( 268 \, \text{K} \) to \( 273 \, \text{K} \),
\( \Delta S_2 = \frac{\Delta H_m \, \text{fusion}}{273} \) corresponds to the melting of the ice at \( 273 \, \text{K} \),
\( \Delta S_3 = \int_{273 \, \text{K}}^{373 \, \text{K}} \frac{C_{p,m}}{T} \, dT \) corresponds to the heating of the water from \( 273 \, \text{K} \) to \( 373 \, \text{K} \),
\( \Delta S_4 = \frac{\Delta H_m \, \text{vaporisation}}{373} \) corresponds to the vaporisation of water at \( 373 \, \text{K} \),
\( \Delta S_5 = \int_{373 \, \text{K}}^{383 \, \text{K}} C_p \, dT \) corresponds to the heating of water vapor from \( 373 \, \text{K} \) to \( 383 \, \text{K} \).
Therefore, the correct answer is option (2).