To find the initial mass of \( \text{CO}_2 \), first calculate the number of moles corresponding to \( 10^{21} \) molecules.
Using Avogadro's number \( N_A = 6.02 \times 10^{23} \, \text{mol}^{-1} \):
\[ \frac{10^{21}}{6.02 \times 10^{23}} = 1.66 \times 10^{-3} \, \text{mol} \]
The initial moles of \( \text{CO}_2 \) are:
\[ 2.8 \times 10^{-3} + 1.66 \times 10^{-3} = 4.46 \times 10^{-3} \, \text{mol} \]
The molar mass of \( \text{CO}_2 \) is approximately \( 44 \, \text{g/mol} \).
Hence, the mass of \( \text{CO}_2 \) is:
\[ 4.46 \times 10^{-3} \, \text{mol} \times 44 \, \text{g/mol} = 196.24 \, \text{mg} \]
Thus, the initial mass of \( \text{CO}_2 \) is 196.2 mg.
Among $ 10^{-10} $ g (each) of the following elements, which one will have the highest number of atoms?
Element : Pb, Po, Pr and Pt
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: