Given:
\( N_A = 6.02 \times 10^{23} \, \text{mol}^{-1} \) (Avogadro's number)
\( \text{mol}_{\text{initial}} = \frac{x \times 10^{-3}}{44} \)
\( \text{mol}_{\text{removal}} = \frac{10^{21}}{6.02 \times 10^{23}} \)
Now, the total moles left can be written as:
\[
\text{mol}_{\text{left}} = \text{mol}_{\text{initial}} - \text{mol}_{\text{removal}}
\]
Substitute the given values:
\[
2.8 \times 10^{-3} = \frac{x \times 10^{-3}}{44} - \frac{10^{21}}{6.02 \times 10^{23}}
\]
Simplifying the equation:
\[
2.8 \times 10^{-3} = \frac{x \times 10^{-3}}{44} - 1.66 \times 10^{-3}
\]
Now, solve for \( x \):
\[
x \times 10^{-3} = (2.8 + 1.66) \times 10^{-3} \times 44
\]
\[
x = 196.2 \, \text{mg}
\]
Thus, the mass of \( \text{CO}_2 \) initially taken is \( 196.2 \, \text{mg} \).