To find the initial mass of \( \text{CO}_2 \), first calculate the number of moles corresponding to \( 10^{21} \) molecules.
Using Avogadro's number \( N_A = 6.02 \times 10^{23} \, \text{mol}^{-1} \):
\[ \frac{10^{21}}{6.02 \times 10^{23}} = 1.66 \times 10^{-3} \, \text{mol} \]
The initial moles of \( \text{CO}_2 \) are:
\[ 2.8 \times 10^{-3} + 1.66 \times 10^{-3} = 4.46 \times 10^{-3} \, \text{mol} \]
The molar mass of \( \text{CO}_2 \) is approximately \( 44 \, \text{g/mol} \).
Hence, the mass of \( \text{CO}_2 \) is:
\[ 4.46 \times 10^{-3} \, \text{mol} \times 44 \, \text{g/mol} = 196.24 \, \text{mg} \]
Thus, the initial mass of \( \text{CO}_2 \) is 196.2 mg.
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
0.1 mole of compound S will weigh ...... g, (given the molar mass in g mol\(^{-1}\) C = 12, H = 1, O = 16)
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: