Step 1: {Heat supplied in process DA and AB}
\[
Q = n C_V (\Delta T)_{DA} + n C_P (\Delta T)_{AB}
\]
Step 2: {For an ideal monoatomic gas,}
\[
C_V = \frac{3}{2} R, \quad C_P = \frac{5}{2} R
\]
Step 3: {Substituting values}
\[
Q = \frac{3}{2} (p_0 V_0) + 5 (p_0 V_0)
\]
\[
= \frac{13}{2} p_0 V_0
\]
Thus, the correct answer is \( \frac{13}{2} p_0 V_0 \).
Was this answer helpful?
6
12
Hide Solution
Verified By Collegedunia
Approach Solution -2
Step 1: Understand the given cycle ABCDA.
This is a rectangular cycle on a P–V diagram involving the following steps:
- A → B: Isobaric expansion at pressure \( 2p_0 \) from \( V_0 \) to \( 2V_0 \)
- B → C: Isochoric cooling at volume \( 2V_0 \) from \( 2p_0 \) to \( p_0 \)
- C → D: Isobaric compression at pressure \( p_0 \) from \( 2V_0 \) to \( V_0 \)
- D → A: Isochoric heating at volume \( V_0 \) from \( p_0 \) to \( 2p_0 \)
Step 2: Use heat expressions for monoatomic ideal gas.
For monoatomic gas:
- Isobaric process: \( Q = \frac{5}{2}nR\Delta T \)
- Isochoric process: \( Q = \frac{3}{2}nR\Delta T \)
Step 3: Use ideal gas law to relate pressure, volume, and temperature:
At point A: \( P = 2p_0, V = V_0 \Rightarrow T_A = \frac{2p_0 V_0}{nR} \)
At point B: \( P = 2p_0, V = 2V_0 \Rightarrow T_B = \frac{4p_0 V_0}{nR} \)
At point C: \( P = p_0, V = 2V_0 \Rightarrow T_C = \frac{2p_0 V_0}{nR} \)
At point D: \( P = p_0, V = V_0 \Rightarrow T_D = \frac{p_0 V_0}{nR} \)
Step 4: Calculate heat for each step.
- A → B (isobaric): \( Q_{AB} = \frac{5}{2}nR(T_B - T_A) = \frac{5}{2}(4 - 2)p_0V_0 = 5p_0V_0 \)
- B → C (isochoric): \( Q_{BC} = \frac{3}{2}nR(T_C - T_B) = \frac{3}{2}(2 - 4)p_0V_0 = -3p_0V_0 \)
- C → D (isobaric): \( Q_{CD} = \frac{5}{2}nR(T_D - T_C) = \frac{5}{2}(1 - 2)p_0V_0 = -\frac{5}{2}p_0V_0 \)
- D → A (isochoric): \( Q_{DA} = \frac{3}{2}nR(T_A - T_D) = \frac{3}{2}(2 - 1)p_0V_0 = \frac{3}{2}p_0V_0 \)