Step 1: Given Data
We are given the following information:
- \( \vec{u} \) and \( \vec{v} \) are unit vectors, meaning \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \).
- \( \vec{u} \cdot \vec{w} = 1 \), \( \vec{v} \cdot \vec{w} = 1 \), and \( \vec{w} \cdot \vec{w} = 4 \).
- The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \) and \( \vec{w} \) is \( \sqrt{2} \).
We are asked to find the value of \( |\vec{A}| = |3\vec{u} + 5\vec{v}| \).
Step 2: Volume of the Parallelepiped
The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \vec{w} \) is given by the scalar triple product:
\[
V = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
We are told that the volume is \( \sqrt{2} \), so:
\[
\sqrt{2} = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
This means the magnitude of the scalar triple product is \( \sqrt{2} \).
Step 3: Expression for \( \vec{v} \times \vec{w} \)
From the vector triple product identity, we know that the scalar triple product can be expanded as:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{u}| |\vec{v} \times \vec{w}| \cos \theta
\]
where \( \theta \) is the angle between \( \vec{u} \) and the cross product \( \vec{v} \times \vec{w} \). Since \( |\vec{u}| = 1 \), the above expression simplifies to:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{v} \times \vec{w}| \cos \theta
\]
Since the volume is given as \( \sqrt{2} \), we know that:
\[
|\vec{v} \times \vec{w}| = \sqrt{2}
\]
Step 4: Compute \( |3\vec{u} + 5\vec{v}| \)
The magnitude of the vector \( 3\vec{u} + 5\vec{v} \) is given by:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{(3^2)(|\vec{u}|^2) + (5^2)(|\vec{v}|^2) + 2(3)(5)(\vec{u} \cdot \vec{v})}
\]
Since \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \), this simplifies to:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 (\vec{u} \cdot \vec{v})}
\]
Next, we need to find \( \vec{u} \cdot \vec{v} \).
Step 5: Calculate \( \vec{u} \cdot \vec{v} \)
From the condition \( \vec{u} \cdot \vec{w} = 1 \) and \( \vec{v} \cdot \vec{w} = 1 \), we know that the angle between \( \vec{u} \) and \( \vec{v} \) is such that the projection of both vectors onto \( \vec{w} \) gives the same result.
Therefore, \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) based on the geometry of the situation.
Step 6: Final Calculation
Substituting \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) into the equation for the magnitude of \( 3\vec{u} + 5\vec{v} \), we get:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 \times \frac{1}{2}} = \sqrt{9 + 25 + 15} = \sqrt{49} = 7
\]
Final Answer:
The value of \( |3\vec{u} + 5\vec{v}| \) is \( 7 \).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?