Step 1: Given Data
We are given the following information:
- \( \vec{u} \) and \( \vec{v} \) are unit vectors, meaning \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \).
- \( \vec{u} \cdot \vec{w} = 1 \), \( \vec{v} \cdot \vec{w} = 1 \), and \( \vec{w} \cdot \vec{w} = 4 \).
- The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \) and \( \vec{w} \) is \( \sqrt{2} \).
We are asked to find the value of \( |\vec{A}| = |3\vec{u} + 5\vec{v}| \).
Step 2: Volume of the Parallelepiped
The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \vec{w} \) is given by the scalar triple product:
\[
V = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
We are told that the volume is \( \sqrt{2} \), so:
\[
\sqrt{2} = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
This means the magnitude of the scalar triple product is \( \sqrt{2} \).
Step 3: Expression for \( \vec{v} \times \vec{w} \)
From the vector triple product identity, we know that the scalar triple product can be expanded as:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{u}| |\vec{v} \times \vec{w}| \cos \theta
\]
where \( \theta \) is the angle between \( \vec{u} \) and the cross product \( \vec{v} \times \vec{w} \). Since \( |\vec{u}| = 1 \), the above expression simplifies to:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{v} \times \vec{w}| \cos \theta
\]
Since the volume is given as \( \sqrt{2} \), we know that:
\[
|\vec{v} \times \vec{w}| = \sqrt{2}
\]
Step 4: Compute \( |3\vec{u} + 5\vec{v}| \)
The magnitude of the vector \( 3\vec{u} + 5\vec{v} \) is given by:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{(3^2)(|\vec{u}|^2) + (5^2)(|\vec{v}|^2) + 2(3)(5)(\vec{u} \cdot \vec{v})}
\]
Since \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \), this simplifies to:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 (\vec{u} \cdot \vec{v})}
\]
Next, we need to find \( \vec{u} \cdot \vec{v} \).
Step 5: Calculate \( \vec{u} \cdot \vec{v} \)
From the condition \( \vec{u} \cdot \vec{w} = 1 \) and \( \vec{v} \cdot \vec{w} = 1 \), we know that the angle between \( \vec{u} \) and \( \vec{v} \) is such that the projection of both vectors onto \( \vec{w} \) gives the same result.
Therefore, \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) based on the geometry of the situation.
Step 6: Final Calculation
Substituting \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) into the equation for the magnitude of \( 3\vec{u} + 5\vec{v} \), we get:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 \times \frac{1}{2}} = \sqrt{9 + 25 + 15} = \sqrt{49} = 7
\]
Final Answer:
The value of \( |3\vec{u} + 5\vec{v}| \) is \( 7 \).
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.