Step 1: Given Data
We are given the following information:
- \( \vec{u} \) and \( \vec{v} \) are unit vectors, meaning \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \).
- \( \vec{u} \cdot \vec{w} = 1 \), \( \vec{v} \cdot \vec{w} = 1 \), and \( \vec{w} \cdot \vec{w} = 4 \).
- The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \) and \( \vec{w} \) is \( \sqrt{2} \).
We are asked to find the value of \( |\vec{A}| = |3\vec{u} + 5\vec{v}| \).
Step 2: Volume of the Parallelepiped
The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \vec{w} \) is given by the scalar triple product:
\[
V = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
We are told that the volume is \( \sqrt{2} \), so:
\[
\sqrt{2} = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
This means the magnitude of the scalar triple product is \( \sqrt{2} \).
Step 3: Expression for \( \vec{v} \times \vec{w} \)
From the vector triple product identity, we know that the scalar triple product can be expanded as:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{u}| |\vec{v} \times \vec{w}| \cos \theta
\]
where \( \theta \) is the angle between \( \vec{u} \) and the cross product \( \vec{v} \times \vec{w} \). Since \( |\vec{u}| = 1 \), the above expression simplifies to:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{v} \times \vec{w}| \cos \theta
\]
Since the volume is given as \( \sqrt{2} \), we know that:
\[
|\vec{v} \times \vec{w}| = \sqrt{2}
\]
Step 4: Compute \( |3\vec{u} + 5\vec{v}| \)
The magnitude of the vector \( 3\vec{u} + 5\vec{v} \) is given by:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{(3^2)(|\vec{u}|^2) + (5^2)(|\vec{v}|^2) + 2(3)(5)(\vec{u} \cdot \vec{v})}
\]
Since \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \), this simplifies to:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 (\vec{u} \cdot \vec{v})}
\]
Next, we need to find \( \vec{u} \cdot \vec{v} \).
Step 5: Calculate \( \vec{u} \cdot \vec{v} \)
From the condition \( \vec{u} \cdot \vec{w} = 1 \) and \( \vec{v} \cdot \vec{w} = 1 \), we know that the angle between \( \vec{u} \) and \( \vec{v} \) is such that the projection of both vectors onto \( \vec{w} \) gives the same result.
Therefore, \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) based on the geometry of the situation.
Step 6: Final Calculation
Substituting \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) into the equation for the magnitude of \( 3\vec{u} + 5\vec{v} \), we get:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 \times \frac{1}{2}} = \sqrt{9 + 25 + 15} = \sqrt{49} = 7
\]
Final Answer:
The value of \( |3\vec{u} + 5\vec{v}| \) is \( 7 \).
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hookeβs law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.