Step 1: Given Data
We are given the following information:
- \( \vec{u} \) and \( \vec{v} \) are unit vectors, meaning \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \).
- \( \vec{u} \cdot \vec{w} = 1 \), \( \vec{v} \cdot \vec{w} = 1 \), and \( \vec{w} \cdot \vec{w} = 4 \).
- The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \) and \( \vec{w} \) is \( \sqrt{2} \).
We are asked to find the value of \( |\vec{A}| = |3\vec{u} + 5\vec{v}| \).
Step 2: Volume of the Parallelepiped
The volume of the parallelepiped formed by the vectors \( \vec{u}, \vec{v}, \vec{w} \) is given by the scalar triple product:
\[
V = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
We are told that the volume is \( \sqrt{2} \), so:
\[
\sqrt{2} = |\vec{u} \cdot (\vec{v} \times \vec{w})|
\]
This means the magnitude of the scalar triple product is \( \sqrt{2} \).
Step 3: Expression for \( \vec{v} \times \vec{w} \)
From the vector triple product identity, we know that the scalar triple product can be expanded as:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{u}| |\vec{v} \times \vec{w}| \cos \theta
\]
where \( \theta \) is the angle between \( \vec{u} \) and the cross product \( \vec{v} \times \vec{w} \). Since \( |\vec{u}| = 1 \), the above expression simplifies to:
\[
\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{v} \times \vec{w}| \cos \theta
\]
Since the volume is given as \( \sqrt{2} \), we know that:
\[
|\vec{v} \times \vec{w}| = \sqrt{2}
\]
Step 4: Compute \( |3\vec{u} + 5\vec{v}| \)
The magnitude of the vector \( 3\vec{u} + 5\vec{v} \) is given by:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{(3^2)(|\vec{u}|^2) + (5^2)(|\vec{v}|^2) + 2(3)(5)(\vec{u} \cdot \vec{v})}
\]
Since \( |\vec{u}| = 1 \) and \( |\vec{v}| = 1 \), this simplifies to:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 (\vec{u} \cdot \vec{v})}
\]
Next, we need to find \( \vec{u} \cdot \vec{v} \).
Step 5: Calculate \( \vec{u} \cdot \vec{v} \)
From the condition \( \vec{u} \cdot \vec{w} = 1 \) and \( \vec{v} \cdot \vec{w} = 1 \), we know that the angle between \( \vec{u} \) and \( \vec{v} \) is such that the projection of both vectors onto \( \vec{w} \) gives the same result.
Therefore, \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) based on the geometry of the situation.
Step 6: Final Calculation
Substituting \( \vec{u} \cdot \vec{v} = \frac{1}{2} \) into the equation for the magnitude of \( 3\vec{u} + 5\vec{v} \), we get:
\[
|3\vec{u} + 5\vec{v}| = \sqrt{9 + 25 + 30 \times \frac{1}{2}} = \sqrt{9 + 25 + 15} = \sqrt{49} = 7
\]
Final Answer:
The value of \( |3\vec{u} + 5\vec{v}| \) is \( 7 \).
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: