\[ \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} \] \[ \vec{d} = \hat{i}(1 \times 1 - 1 \times 2) - \hat{j}(1 \times 1 - 1 \times 2) + \hat{k}(1 \times 2 - 1 \times 2) \] \[ \vec{d} = \hat{i}(1 - 2) - \hat{j}(1 - 2) + \hat{k}(2 - 2) \] \[ \vec{d} = -\hat{i} + \hat{j} \]
\[ |\vec{d}| = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \]
Let \( \vec{c} = \alpha \vec{a} + \beta \vec{d} \). \[ \vec{a} \cdot \vec{c} = \alpha (\vec{a} \cdot \vec{a}) + \beta (\vec{a} \cdot \vec{d}) \] Since \( \vec{a} \perp \vec{d} \), \( \vec{a} \cdot \vec{d} = 0 \). \[ \vec{a} \cdot \vec{c} = \alpha (\vec{a} \cdot \vec{a}) = \alpha (1^2 + 1^2 + 1^2) = 3\alpha \] Also, \( \vec{a} \cdot \vec{c} = |\vec{c}| \). \[ 3\alpha = |\vec{c}| \]
\[ |\vec{c} - 2\vec{d}| = 8 \] \[ |\alpha \vec{a} + \beta \vec{d} - 2\vec{d}| = 8 \] \[ \vec{c} - 2\vec{d} = \alpha \vec{a} + (\beta - 2)\vec{d} \] \[ \|\vec{c} - 2\vec{d}\| = \sqrt{(3\alpha)^2 + (\beta - 2)^2 \times 2} \] \[ 9\alpha^2 + 2(\beta - 2)^2 = 64 \]
\[ \cos \frac{\pi}{4} = \frac{\vec{d} \cdot \vec{c}}{|\vec{d}||\vec{c}|} = \frac{\beta |\vec{d}|^2}{|\vec{d}||\vec{c}|} \] \[ \frac{\beta \times 2}{\sqrt{2} \times 3\alpha} = \frac{1}{\sqrt{2}} \] \[ \frac{2\beta}{3\alpha} = 1 \implies \beta = \frac{3\alpha}{2} \]
\[ 9\alpha^2 + 2\left( \frac{3\alpha}{2} - 2 \right)^2 = 64 \] Solving this equation will give us the final result.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to