Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Step 1: Understanding the Problem
We are given that:
\[(1 + \frac{2}{5}x)^{23} = \sum_{i=0}^{23} a_i x^i\]
This means that \(a_i\) represents the coefficient of \(x^i\) in the expansion of \((1 + \frac{2}{5}x)^{23}\).
Step 2: General Term of the Expansion
From the binomial theorem, the general term is:
\[T_{i} = \binom{23}{i} \left(\frac{2}{5}x\right)^i\]
So, the coefficient of \(x^i\) is:
\[a_i = \binom{23}{i}\left(\frac{2}{5}\right)^i\]
Step 3: Behavior of Coefficients
We need to find which \(a_i\) is the largest among \(a_0, a_1, \dots, a_{23}\).
To do this, consider the ratio:
\[\frac{a_{i+1}}{a_i} = \frac{\binom{23}{i+1}\left(\frac{2}{5}\right)^{i+1}}{\binom{23}{i}\left(\frac{2}{5}\right)^i}\]
Simplify:
\[\frac{a_{i+1}}{a_i} = \frac{23-i}{i+1} \cdot \frac{2}{5}\]
Step 4: Condition for Increasing Sequence
If \(\frac{a_{i+1}}{a_i} > 1\), the sequence increases; if less than 1, it decreases.
\[\frac{23-i}{i+1} \cdot \frac{2}{5} > 1\]
\[\frac{23-i}{i+1} > \frac{5}{2}\]
\[2(23-i) > 5(i+1)\]
\[46 - 2i > 5i + 5\]
\[46 - 5 > 7i\]
\[41 > 7i\]
\[i < \frac{41}{7} \approx 5.857\]
Step 5: Identifying the Maximum
Thus, the coefficients increase up to \(i = 5\) and then start decreasing after \(i = 6\)
Therefore, the largest coefficient occurs at \(i = 6\).
Final Answer
The value of \(r\) is:
r = 6
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?