Let the two vectors be \( \mathbf{A} \) and \( \mathbf{B} \). We are given that their sum is a unit vector, i.e.,
\[
\mathbf{A} + \mathbf{B} = \hat{i}
\]
where \( \hat{i} \) is a unit vector. We need to find the magnitude of their difference, \( \left| \mathbf{A} - \mathbf{B} \right| \).
### Step 1: Use the identity for the square of the sum and difference of vectors
We know the following vector identities:
\[
\left| \mathbf{A} + \mathbf{B} \right|^2 = \left| \mathbf{A} \right|^2 + \left| \mathbf{B} \right|^2 + 2 \mathbf{A} \cdot \mathbf{B}
\]
and
\[
\left| \mathbf{A} - \mathbf{B} \right|^2 = \left| \mathbf{A} \right|^2 + \left| \mathbf{B} \right|^2 - 2 \mathbf{A} \cdot \mathbf{B}
\]
### Step 2: Apply the given information
Since \( \mathbf{A} + \mathbf{B} = \hat{i} \), we know that:
\[
\left| \mathbf{A} + \mathbf{B} \right|^2 = 1
\]
So, we have:
\[
1 = \left| \mathbf{A} \right|^2 + \left| \mathbf{B} \right|^2 + 2 \mathbf{A} \cdot \mathbf{B}
\]
Now, we calculate the magnitude of \( \mathbf{A} - \mathbf{B} \):
\[
\left| \mathbf{A} - \mathbf{B} \right|^2 = \left| \mathbf{A} \right|^2 + \left| \mathbf{B} \right|^2 - 2 \mathbf{A} \cdot \mathbf{B}
\]
By substituting values into the equation, we get:
\[
\left| \mathbf{A} - \mathbf{B} \right|^2 = 3
\]
Thus, the magnitude of the difference of the two vectors is:
\[
\left| \mathbf{A} - \mathbf{B} \right| = \sqrt{3}
\]
Hence, the correct answer is \( \sqrt{3} \).