Question:

If $$ \alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} \, dx, $$ then the value of $ \sqrt{7} \tan \left( \frac{2\alpha \sqrt{7}}{\pi} \right) $ is.
(Here, the inverse trigonometric function $ \tan^{-1} x $ assumes values in $ \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) $.)

Show Hint

For integrals involving \( \tan^{-1} x \), use substitutions to simplify the denominator and recognize patterns that lead to standard forms.
Updated On: May 19, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Simplify the denominator.
\[ 2x^2 - 3x + 2 = 2 \left( x - \frac{3}{4} \right)^2 + \frac{7}{8}. \]
Step 2: Substitute to simplify the integral.
Let \( u = x - \frac{3}{4} \), so \( x = u + \frac{3}{4} \), \( dx = du \). Limits: \( x = \frac{1}{2} \to u = -\frac{1}{4} \), \( x = 2 \to u = \frac{5}{4} \). The integral becomes: \[ \alpha = \int_{-\frac{1}{4}}^{\frac{5}{4}} \frac{\tan^{-1} \left( u + \frac{3}{4} \right)}{2u^2 + \frac{7}{8}} \, du. \] Let \( v = u \cdot \frac{2\sqrt{2}}{\sqrt{7}} \), so \( u = v \cdot \frac{\sqrt{7}}{2\sqrt{2}} \), \( du = \frac{\sqrt{7}}{2\sqrt{2}} dv \). Adjust the denominator and limits accordingly, leading to: \[ \alpha = \frac{4}{\sqrt{14}} \int_{-\frac{\sqrt{2}}{2\sqrt{7}}}^{\frac{5\sqrt{2}}{2\sqrt{7}}} \frac{\tan^{-1} \left( v \cdot \frac{\sqrt{7}}{2\sqrt{2}} + \frac{3}{4} \right)}{2v^2 + 1} \, dv. \]
Step 3: Evaluate the integral.
The integral form suggests a result where: \[ \frac{2\alpha \sqrt{7}}{\pi} = \frac{\pi}{4}, \] \[ \tan \left( \frac{\pi}{4} \right) = 1, \] \[ \sqrt{7} \tan \left( \frac{2\alpha \sqrt{7}}{\pi} \right) = \sqrt{7} \cdot 1 = \sqrt{7}. \] \[ \boxed{\sqrt{7}} \]
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions