Step 1: Let \( x = \tan \theta \). Then \( \theta = \tan^{-1} x \) Substitute in the given equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 2: Apply \( \tan^{-1} x = \theta \Rightarrow x = \tan \theta \) and the domain restriction \( \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \Rightarrow x \in \mathbb{R} \) We rewrite the equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 3: Define LHS = RHS and analyze the function: Let \[ f(x) = \tan^{-1} x - \tan^{-1}(2x) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We want to solve \( f(x) = 0 \)
Step 4: Observe that \[ \tan^{-1} x - \tan^{-1}(2x) = \tan^{-1} \left( \frac{x - 2x}{1 + 2x^2} \right) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) \] So, \[ f(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] Step 5: Let us analyze \( f(x) = 0 \Rightarrow \) \[ \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) = -\frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] So define a function: \[ g(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We now find the number of real solutions of \( g(x) = 0 \)
Step 6: Graphical/Monotonicity Analysis (or plotting): Using symmetry and bounds: - \( \left| \frac{-x}{1 + 2x^2} \right| \leq \frac{1}{2\sqrt{2}} \Rightarrow \tan^{-1} \text{ bounded} \) - \( \left| \frac{6x}{9 + x^2} \right| \leq 1 \Rightarrow \sin^{-1} \text{ defined} \)
Graphing \( g(x) \) shows that it crosses the x-axis three times. So, the number of real solutions is 3.
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?