Step 1: Let \( x = \tan \theta \). Then \( \theta = \tan^{-1} x \) Substitute in the given equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 2: Apply \( \tan^{-1} x = \theta \Rightarrow x = \tan \theta \) and the domain restriction \( \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \Rightarrow x \in \mathbb{R} \) We rewrite the equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 3: Define LHS = RHS and analyze the function: Let \[ f(x) = \tan^{-1} x - \tan^{-1}(2x) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We want to solve \( f(x) = 0 \)
Step 4: Observe that \[ \tan^{-1} x - \tan^{-1}(2x) = \tan^{-1} \left( \frac{x - 2x}{1 + 2x^2} \right) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) \] So, \[ f(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] Step 5: Let us analyze \( f(x) = 0 \Rightarrow \) \[ \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) = -\frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] So define a function: \[ g(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We now find the number of real solutions of \( g(x) = 0 \)
Step 6: Graphical/Monotonicity Analysis (or plotting): Using symmetry and bounds: - \( \left| \frac{-x}{1 + 2x^2} \right| \leq \frac{1}{2\sqrt{2}} \Rightarrow \tan^{-1} \text{ bounded} \) - \( \left| \frac{6x}{9 + x^2} \right| \leq 1 \Rightarrow \sin^{-1} \text{ defined} \)
Graphing \( g(x) \) shows that it crosses the x-axis three times. So, the number of real solutions is 3.
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.