Step 1: Let \( x = \tan \theta \). Then \( \theta = \tan^{-1} x \) Substitute in the given equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 2: Apply \( \tan^{-1} x = \theta \Rightarrow x = \tan \theta \) and the domain restriction \( \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \Rightarrow x \in \mathbb{R} \) We rewrite the equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 3: Define LHS = RHS and analyze the function: Let \[ f(x) = \tan^{-1} x - \tan^{-1}(2x) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We want to solve \( f(x) = 0 \)
Step 4: Observe that \[ \tan^{-1} x - \tan^{-1}(2x) = \tan^{-1} \left( \frac{x - 2x}{1 + 2x^2} \right) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) \] So, \[ f(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] Step 5: Let us analyze \( f(x) = 0 \Rightarrow \) \[ \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) = -\frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] So define a function: \[ g(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We now find the number of real solutions of \( g(x) = 0 \)
Step 6: Graphical/Monotonicity Analysis (or plotting): Using symmetry and bounds: - \( \left| \frac{-x}{1 + 2x^2} \right| \leq \frac{1}{2\sqrt{2}} \Rightarrow \tan^{-1} \text{ bounded} \) - \( \left| \frac{6x}{9 + x^2} \right| \leq 1 \Rightarrow \sin^{-1} \text{ defined} \)
Graphing \( g(x) \) shows that it crosses the x-axis three times. So, the number of real solutions is 3.
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is