Step 1: Let \( x = \tan \theta \). Then \( \theta = \tan^{-1} x \) Substitute in the given equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 2: Apply \( \tan^{-1} x = \theta \Rightarrow x = \tan \theta \) and the domain restriction \( \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \Rightarrow x \in \mathbb{R} \) We rewrite the equation: \[ \tan^{-1} x = \tan^{-1}(2x) - \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \]
Step 3: Define LHS = RHS and analyze the function: Let \[ f(x) = \tan^{-1} x - \tan^{-1}(2x) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We want to solve \( f(x) = 0 \)
Step 4: Observe that \[ \tan^{-1} x - \tan^{-1}(2x) = \tan^{-1} \left( \frac{x - 2x}{1 + 2x^2} \right) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) \] So, \[ f(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] Step 5: Let us analyze \( f(x) = 0 \Rightarrow \) \[ \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) = -\frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] So define a function: \[ g(x) = \tan^{-1} \left( \frac{-x}{1 + 2x^2} \right) + \frac{1}{2} \sin^{-1} \left( \frac{6x}{9 + x^2} \right) \] We now find the number of real solutions of \( g(x) = 0 \)
Step 6: Graphical/Monotonicity Analysis (or plotting): Using symmetry and bounds: - \( \left| \frac{-x}{1 + 2x^2} \right| \leq \frac{1}{2\sqrt{2}} \Rightarrow \tan^{-1} \text{ bounded} \) - \( \left| \frac{6x}{9 + x^2} \right| \leq 1 \Rightarrow \sin^{-1} \text{ defined} \)
Graphing \( g(x) \) shows that it crosses the x-axis three times. So, the number of real solutions is 3.
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.