We are given the limit:
\[
\lim_{x \to 0} \frac{\cos(2x) + a \cos(4x) - b}{x^4}
\]
To solve this, we first use the Taylor series expansions for \( \cos(2x) \) and \( \cos(4x) \) around \( x = 0 \):
\[
\cos(2x) = 1 - 2x^2 + O(x^4)
\]
\[
\cos(4x) = 1 - 8x^2 + O(x^4)
\]
Substituting these expansions into the given expression:
\[
\frac{\left( 1 - 2x^2 + O(x^4) \right) + a \left( 1 - 8x^2 + O(x^4) \right) - b}{x^4}
\]
Simplifying:
\[
\frac{(1 + a - b) + (-2 + a(-8))x^2 + O(x^4)}{x^4}
\]
For this limit to be finite, the numerator must have no terms of degree less than \( x^4 \). Therefore, the coefficient of \( x^2 \) must be 0. Thus, we have:
\[
-2 + a(-8) = 0 \quad \Rightarrow \quad a = \frac{2}{8} = \frac{1}{4}
\]
Additionally, for the constant term to cancel out, we must have:
\[
1 + a - b = 0 \quad \Rightarrow \quad 1 + \frac{1}{4} - b = 0 \quad \Rightarrow \quad b = \frac{5}{4}
\]
Therefore, \( a + b = \frac{1}{4} + \frac{5}{4} = 0 \).
Thus, the correct answer is \( a + b = 0 \).