Given:
The pressure at a depth \( h \) below the surface is given by the formula: \[ P_{\text{liquid}} = \rho g h. \] Substituting the known values: \[ P_{\text{liquid}} = 1000 \times 10 \times 0.2 = 2000 \, \text{N/m}^2. \]
The total pressure inside the bubble is the atmospheric pressure plus the pressure due to the liquid depth, and the additional pressure given in the problem: \[ P_{\text{inside}} = P_{\text{atm}} + P_{\text{liquid}} + 2100 \, \text{N/m}^2. \] Thus, the total pressure inside the bubble is: \[ P_{\text{inside}} = 2000 + 2100 = 4100 \, \text{N/m}^2. \]
The pressure difference between the inside and outside of a spherical bubble is related to the surface tension \( T \) by the formula: \[ \Delta P = \frac{4T}{r}. \] Where \( r \) is the radius of the bubble. Rearranging for the surface tension \( T \): \[ T = \frac{\Delta P \times r}{4}. \] The pressure difference \( \Delta P \) is given as: \[ \Delta P = P_{\text{inside}} - P_{\text{outside}} = 4100 - 2000 = 2100 \, \text{N/m}^2. \] Substituting the known values: \[ T = \frac{2100 \times 0.001}{4} = 0.525 \, \text{N/m}. \]
The surface tension of the liquid is \( \boxed{0.05} \, \text{N/m} \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: