To solve this problem, we need to determine the value of \( a^2 + b^2 \) of the given ellipse equation:
\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)
Thus, the value of \(a^2 + b^2\) is 126.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: