We are given two sets \( A \) and \( B \) defined by: \[ A = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : |\alpha - 1| \leq 4 \text{ and } |\beta - 5| \leq 6\} \] This defines a rectangular region where \( \alpha \) lies between \( -3 \) and \( 5 \), and \( \beta \) lies between \( -1 \) and \( 11 \). \[ B = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : 16(\alpha - 2)^2 + 9(\beta - 6)^2 \leq 144\} \] This defines an ellipse with center \( (2, 6) \), semi-major axis 4 along the \( \beta \)-axis, and semi-minor axis 3 along the \( \alpha \)-axis.
We see that the ellipse \( B \) fits entirely within the rectangle \( A \), meaning that \( B \subset A \).
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .