We are given two sets \( A \) and \( B \) defined by: \[ A = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : |\alpha - 1| \leq 4 \text{ and } |\beta - 5| \leq 6\} \] This defines a rectangular region where \( \alpha \) lies between \( -3 \) and \( 5 \), and \( \beta \) lies between \( -1 \) and \( 11 \). \[ B = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : 16(\alpha - 2)^2 + 9(\beta - 6)^2 \leq 144\} \] This defines an ellipse with center \( (2, 6) \), semi-major axis 4 along the \( \beta \)-axis, and semi-minor axis 3 along the \( \alpha \)-axis.
We see that the ellipse \( B \) fits entirely within the rectangle \( A \), meaning that \( B \subset A \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: