To solve the given problem, let's analyze the sets \( A \) and \( B \) and determine the relationship between them.
Thus, after analyzing both shapes and their boundaries, it is clear that the correct answer is \( B \subset A \).
We are given two sets \( A \) and \( B \) defined by: \[ A = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : |\alpha - 1| \leq 4 \text{ and } |\beta - 5| \leq 6\} \] This defines a rectangular region where \( \alpha \) lies between \( -3 \) and \( 5 \), and \( \beta \) lies between \( -1 \) and \( 11 \). \[ B = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : 16(\alpha - 2)^2 + 9(\beta - 6)^2 \leq 144\} \] This defines an ellipse with center \( (2, 6) \), semi-major axis 4 along the \( \beta \)-axis, and semi-minor axis 3 along the \( \alpha \)-axis.
We see that the ellipse \( B \) fits entirely within the rectangle \( A \), meaning that \( B \subset A \).
Let each of the two ellipses $E_1:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;(a>b)$ and $E_2:\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}=1A$
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 