To find the area of the quadrilateral ABCD where the ellipses \(E_1\) and \(E_2\) intersect, first determine key parameters of the ellipses.
Step 1: Calculate Eccentricity Relation
Both ellipses have the same eccentricity \(e = \sqrt{\frac{1}{3}}\). For an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\), eccentricity is given by \(e = \sqrt{1-\frac{b^2}{a^2}}\) (assuming \(a > b\)). Thus:
\(e_1 = \sqrt{1-\frac{b^2}{a^2}} = \sqrt{\frac{1}{3}}\) implies \(\frac{b^2}{a^2} = \frac{2}{3} \Rightarrow b^2 = \frac{2}{3}a^2\).
Similarly, \(e_2 = \sqrt{1-\frac{A^2}{B^2}} = \sqrt{\frac{1}{3}}\) implies \(\frac{A^2}{B^2} = \frac{2}{3} \Rightarrow A^2 = \frac{2}{3}B^2\).
Step 2: Use Given Constraints
The product of lengths of latus rectums is \(\sqrt{\frac{32}{3}}\):
Length of latus rectum for ellipse \(E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) is \(\frac{2b^2}{a}\).
Thus: \(\frac{2b^2}{a} \cdot \frac{2A^2}{B} = \sqrt{\frac{32}{3}}\).
Substitute \(b^2 = \frac{2}{3}a^2\) and \(A^2 = \frac{2}{3}B^2\):
\(\frac{2 \cdot \frac{2}{3} a^2}{a} \cdot \frac{2 \cdot \frac{2}{3} B^2}{B} = \sqrt{\frac{32}{3}}\).
\(\Rightarrow \frac{8}{3}a \cdot \frac{8}{3}B = \sqrt{\frac{32}{3}} \Rightarrow \frac{64}{9}ab = \sqrt{\frac{32}{3}}\).
Simplify to find the relation: \(ab = 1\).
Step 3: Distance Between Foci of \(E_1\)
Distance between foci for \(E_1\): \(2ae_1 = 4\).
Given \(e_1 = \sqrt{\frac{1}{3}}\), we get \(2a \cdot \sqrt{\frac{1}{3}} = 4 \Rightarrow a = 2\sqrt{3}.\)
Step 4: Determine \(b\) and \(B\)
Since \(ab = 1\), \(b = \frac{1}{2\sqrt{3}}\).
And since \(b^2 = \frac{2}{3}a^2\), we can verify this result. As \(a = 2\sqrt{3}\), \(b = \sqrt{\frac{2}{3}(2\sqrt{3})^2} = \frac{1}{2\sqrt{3}}\).
Step 5: Determine \(A\) and Simplify
Use similar relations for \(E_2\): \(A^2 = \frac{2}{3}B^2\) and \(A = b\sqrt{3} \Rightarrow A = \frac{1}{\sqrt{3}}\).
Step 6: Find the Area of Quadrilateral ABCD
For the intersection of the ellipses, use the determined semi-major and semi-minor axes. Quadrilateral formed will have area:
\(A = 2ab(\sqrt{9-4e^2}) = 2 \times 2\sqrt{3} \times \frac{1}{2\sqrt{3}}(\sqrt{9 - 4 \cdot \frac{1}{3}}) = 12\sqrt{6}\).
Conclusion: The area of quadrilateral ABCD is \(12 \sqrt{6}\).
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is: