Let
\(S = \left\{z∈C : z^2+\overline{z} = 0 \right\}\). Then \(∑_{z∈S}(Re(z)+Im(z))\)
is equal to____.
The correct answer is 0
\(∵ z^2+\overline{z} = 0\) Let \(z = x+iy\)
\(∴ x^2+y^2+2ixy+x-iy = 0\)
\((x^2-y^2+x)+i(2xy-y) = 0\)
\(∴ x^2+y^2 = 0\) and \((2x-1)y = 0\)
If \(x = +\frac{1}{2}\) then \(y = ±\frac{\sqrt3}{2}\)
And if y = 0 then x = 0, –1
\(∴\) \(z = \{ 0 + 0i, -1 + 0i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i \}\)
\(∴ ∑(R_e(z)+m(z)) = 0\)
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.